(0) Obligation:
Runtime Complexity TRS:
The TRS R consists of the following rules:
cond1(true, x, y) → cond2(gr(y, 0), x, y)
cond2(true, x, y) → cond2(gr(y, 0), p(x), p(y))
cond2(false, x, y) → cond1(and(eq(x, y), gr(x, 0)), x, y)
gr(0, x) → false
gr(s(x), 0) → true
gr(s(x), s(y)) → gr(x, y)
p(0) → 0
p(s(x)) → x
eq(0, 0) → true
eq(s(x), 0) → false
eq(0, s(x)) → false
eq(s(x), s(y)) → eq(x, y)
and(true, true) → true
and(false, x) → false
and(x, false) → false
Rewrite Strategy: FULL
(1) RenamingProof (EQUIVALENT transformation)
Renamed function symbols to avoid clashes with predefined symbol.
(2) Obligation:
Runtime Complexity Relative TRS:
The TRS R consists of the following rules:
cond1(true, x, y) → cond2(gr(y, 0'), x, y)
cond2(true, x, y) → cond2(gr(y, 0'), p(x), p(y))
cond2(false, x, y) → cond1(and(eq(x, y), gr(x, 0')), x, y)
gr(0', x) → false
gr(s(x), 0') → true
gr(s(x), s(y)) → gr(x, y)
p(0') → 0'
p(s(x)) → x
eq(0', 0') → true
eq(s(x), 0') → false
eq(0', s(x)) → false
eq(s(x), s(y)) → eq(x, y)
and(true, true) → true
and(false, x) → false
and(x, false) → false
S is empty.
Rewrite Strategy: FULL
(3) TypeInferenceProof (BOTH BOUNDS(ID, ID) transformation)
Infered types.
(4) Obligation:
TRS:
Rules:
cond1(true, x, y) → cond2(gr(y, 0'), x, y)
cond2(true, x, y) → cond2(gr(y, 0'), p(x), p(y))
cond2(false, x, y) → cond1(and(eq(x, y), gr(x, 0')), x, y)
gr(0', x) → false
gr(s(x), 0') → true
gr(s(x), s(y)) → gr(x, y)
p(0') → 0'
p(s(x)) → x
eq(0', 0') → true
eq(s(x), 0') → false
eq(0', s(x)) → false
eq(s(x), s(y)) → eq(x, y)
and(true, true) → true
and(false, x) → false
and(x, false) → false
Types:
cond1 :: true:false → 0':s → 0':s → cond1:cond2
true :: true:false
cond2 :: true:false → 0':s → 0':s → cond1:cond2
gr :: 0':s → 0':s → true:false
0' :: 0':s
p :: 0':s → 0':s
false :: true:false
and :: true:false → true:false → true:false
eq :: 0':s → 0':s → true:false
s :: 0':s → 0':s
hole_cond1:cond21_0 :: cond1:cond2
hole_true:false2_0 :: true:false
hole_0':s3_0 :: 0':s
gen_0':s4_0 :: Nat → 0':s
(5) OrderProof (LOWER BOUND(ID) transformation)
Heuristically decided to analyse the following defined symbols:
cond1,
cond2,
gr,
eqThey will be analysed ascendingly in the following order:
cond1 = cond2
gr < cond1
gr < cond2
eq < cond2
(6) Obligation:
TRS:
Rules:
cond1(
true,
x,
y) →
cond2(
gr(
y,
0'),
x,
y)
cond2(
true,
x,
y) →
cond2(
gr(
y,
0'),
p(
x),
p(
y))
cond2(
false,
x,
y) →
cond1(
and(
eq(
x,
y),
gr(
x,
0')),
x,
y)
gr(
0',
x) →
falsegr(
s(
x),
0') →
truegr(
s(
x),
s(
y)) →
gr(
x,
y)
p(
0') →
0'p(
s(
x)) →
xeq(
0',
0') →
trueeq(
s(
x),
0') →
falseeq(
0',
s(
x)) →
falseeq(
s(
x),
s(
y)) →
eq(
x,
y)
and(
true,
true) →
trueand(
false,
x) →
falseand(
x,
false) →
falseTypes:
cond1 :: true:false → 0':s → 0':s → cond1:cond2
true :: true:false
cond2 :: true:false → 0':s → 0':s → cond1:cond2
gr :: 0':s → 0':s → true:false
0' :: 0':s
p :: 0':s → 0':s
false :: true:false
and :: true:false → true:false → true:false
eq :: 0':s → 0':s → true:false
s :: 0':s → 0':s
hole_cond1:cond21_0 :: cond1:cond2
hole_true:false2_0 :: true:false
hole_0':s3_0 :: 0':s
gen_0':s4_0 :: Nat → 0':s
Generator Equations:
gen_0':s4_0(0) ⇔ 0'
gen_0':s4_0(+(x, 1)) ⇔ s(gen_0':s4_0(x))
The following defined symbols remain to be analysed:
gr, cond1, cond2, eq
They will be analysed ascendingly in the following order:
cond1 = cond2
gr < cond1
gr < cond2
eq < cond2
(7) RewriteLemmaProof (LOWER BOUND(ID) transformation)
Proved the following rewrite lemma:
gr(
gen_0':s4_0(
n6_0),
gen_0':s4_0(
n6_0)) →
false, rt ∈ Ω(1 + n6
0)
Induction Base:
gr(gen_0':s4_0(0), gen_0':s4_0(0)) →RΩ(1)
false
Induction Step:
gr(gen_0':s4_0(+(n6_0, 1)), gen_0':s4_0(+(n6_0, 1))) →RΩ(1)
gr(gen_0':s4_0(n6_0), gen_0':s4_0(n6_0)) →IH
false
We have rt ∈ Ω(n1) and sz ∈ O(n). Thus, we have ircR ∈ Ω(n).
(8) Complex Obligation (BEST)
(9) Obligation:
TRS:
Rules:
cond1(
true,
x,
y) →
cond2(
gr(
y,
0'),
x,
y)
cond2(
true,
x,
y) →
cond2(
gr(
y,
0'),
p(
x),
p(
y))
cond2(
false,
x,
y) →
cond1(
and(
eq(
x,
y),
gr(
x,
0')),
x,
y)
gr(
0',
x) →
falsegr(
s(
x),
0') →
truegr(
s(
x),
s(
y)) →
gr(
x,
y)
p(
0') →
0'p(
s(
x)) →
xeq(
0',
0') →
trueeq(
s(
x),
0') →
falseeq(
0',
s(
x)) →
falseeq(
s(
x),
s(
y)) →
eq(
x,
y)
and(
true,
true) →
trueand(
false,
x) →
falseand(
x,
false) →
falseTypes:
cond1 :: true:false → 0':s → 0':s → cond1:cond2
true :: true:false
cond2 :: true:false → 0':s → 0':s → cond1:cond2
gr :: 0':s → 0':s → true:false
0' :: 0':s
p :: 0':s → 0':s
false :: true:false
and :: true:false → true:false → true:false
eq :: 0':s → 0':s → true:false
s :: 0':s → 0':s
hole_cond1:cond21_0 :: cond1:cond2
hole_true:false2_0 :: true:false
hole_0':s3_0 :: 0':s
gen_0':s4_0 :: Nat → 0':s
Lemmas:
gr(gen_0':s4_0(n6_0), gen_0':s4_0(n6_0)) → false, rt ∈ Ω(1 + n60)
Generator Equations:
gen_0':s4_0(0) ⇔ 0'
gen_0':s4_0(+(x, 1)) ⇔ s(gen_0':s4_0(x))
The following defined symbols remain to be analysed:
eq, cond1, cond2
They will be analysed ascendingly in the following order:
cond1 = cond2
eq < cond2
(10) RewriteLemmaProof (LOWER BOUND(ID) transformation)
Proved the following rewrite lemma:
eq(
gen_0':s4_0(
n307_0),
gen_0':s4_0(
n307_0)) →
true, rt ∈ Ω(1 + n307
0)
Induction Base:
eq(gen_0':s4_0(0), gen_0':s4_0(0)) →RΩ(1)
true
Induction Step:
eq(gen_0':s4_0(+(n307_0, 1)), gen_0':s4_0(+(n307_0, 1))) →RΩ(1)
eq(gen_0':s4_0(n307_0), gen_0':s4_0(n307_0)) →IH
true
We have rt ∈ Ω(n1) and sz ∈ O(n). Thus, we have ircR ∈ Ω(n).
(11) Complex Obligation (BEST)
(12) Obligation:
TRS:
Rules:
cond1(
true,
x,
y) →
cond2(
gr(
y,
0'),
x,
y)
cond2(
true,
x,
y) →
cond2(
gr(
y,
0'),
p(
x),
p(
y))
cond2(
false,
x,
y) →
cond1(
and(
eq(
x,
y),
gr(
x,
0')),
x,
y)
gr(
0',
x) →
falsegr(
s(
x),
0') →
truegr(
s(
x),
s(
y)) →
gr(
x,
y)
p(
0') →
0'p(
s(
x)) →
xeq(
0',
0') →
trueeq(
s(
x),
0') →
falseeq(
0',
s(
x)) →
falseeq(
s(
x),
s(
y)) →
eq(
x,
y)
and(
true,
true) →
trueand(
false,
x) →
falseand(
x,
false) →
falseTypes:
cond1 :: true:false → 0':s → 0':s → cond1:cond2
true :: true:false
cond2 :: true:false → 0':s → 0':s → cond1:cond2
gr :: 0':s → 0':s → true:false
0' :: 0':s
p :: 0':s → 0':s
false :: true:false
and :: true:false → true:false → true:false
eq :: 0':s → 0':s → true:false
s :: 0':s → 0':s
hole_cond1:cond21_0 :: cond1:cond2
hole_true:false2_0 :: true:false
hole_0':s3_0 :: 0':s
gen_0':s4_0 :: Nat → 0':s
Lemmas:
gr(gen_0':s4_0(n6_0), gen_0':s4_0(n6_0)) → false, rt ∈ Ω(1 + n60)
eq(gen_0':s4_0(n307_0), gen_0':s4_0(n307_0)) → true, rt ∈ Ω(1 + n3070)
Generator Equations:
gen_0':s4_0(0) ⇔ 0'
gen_0':s4_0(+(x, 1)) ⇔ s(gen_0':s4_0(x))
The following defined symbols remain to be analysed:
cond2, cond1
They will be analysed ascendingly in the following order:
cond1 = cond2
(13) NoRewriteLemmaProof (LOWER BOUND(ID) transformation)
Could not prove a rewrite lemma for the defined symbol cond2.
(14) Obligation:
TRS:
Rules:
cond1(
true,
x,
y) →
cond2(
gr(
y,
0'),
x,
y)
cond2(
true,
x,
y) →
cond2(
gr(
y,
0'),
p(
x),
p(
y))
cond2(
false,
x,
y) →
cond1(
and(
eq(
x,
y),
gr(
x,
0')),
x,
y)
gr(
0',
x) →
falsegr(
s(
x),
0') →
truegr(
s(
x),
s(
y)) →
gr(
x,
y)
p(
0') →
0'p(
s(
x)) →
xeq(
0',
0') →
trueeq(
s(
x),
0') →
falseeq(
0',
s(
x)) →
falseeq(
s(
x),
s(
y)) →
eq(
x,
y)
and(
true,
true) →
trueand(
false,
x) →
falseand(
x,
false) →
falseTypes:
cond1 :: true:false → 0':s → 0':s → cond1:cond2
true :: true:false
cond2 :: true:false → 0':s → 0':s → cond1:cond2
gr :: 0':s → 0':s → true:false
0' :: 0':s
p :: 0':s → 0':s
false :: true:false
and :: true:false → true:false → true:false
eq :: 0':s → 0':s → true:false
s :: 0':s → 0':s
hole_cond1:cond21_0 :: cond1:cond2
hole_true:false2_0 :: true:false
hole_0':s3_0 :: 0':s
gen_0':s4_0 :: Nat → 0':s
Lemmas:
gr(gen_0':s4_0(n6_0), gen_0':s4_0(n6_0)) → false, rt ∈ Ω(1 + n60)
eq(gen_0':s4_0(n307_0), gen_0':s4_0(n307_0)) → true, rt ∈ Ω(1 + n3070)
Generator Equations:
gen_0':s4_0(0) ⇔ 0'
gen_0':s4_0(+(x, 1)) ⇔ s(gen_0':s4_0(x))
The following defined symbols remain to be analysed:
cond1
They will be analysed ascendingly in the following order:
cond1 = cond2
(15) NoRewriteLemmaProof (LOWER BOUND(ID) transformation)
Could not prove a rewrite lemma for the defined symbol cond1.
(16) Obligation:
TRS:
Rules:
cond1(
true,
x,
y) →
cond2(
gr(
y,
0'),
x,
y)
cond2(
true,
x,
y) →
cond2(
gr(
y,
0'),
p(
x),
p(
y))
cond2(
false,
x,
y) →
cond1(
and(
eq(
x,
y),
gr(
x,
0')),
x,
y)
gr(
0',
x) →
falsegr(
s(
x),
0') →
truegr(
s(
x),
s(
y)) →
gr(
x,
y)
p(
0') →
0'p(
s(
x)) →
xeq(
0',
0') →
trueeq(
s(
x),
0') →
falseeq(
0',
s(
x)) →
falseeq(
s(
x),
s(
y)) →
eq(
x,
y)
and(
true,
true) →
trueand(
false,
x) →
falseand(
x,
false) →
falseTypes:
cond1 :: true:false → 0':s → 0':s → cond1:cond2
true :: true:false
cond2 :: true:false → 0':s → 0':s → cond1:cond2
gr :: 0':s → 0':s → true:false
0' :: 0':s
p :: 0':s → 0':s
false :: true:false
and :: true:false → true:false → true:false
eq :: 0':s → 0':s → true:false
s :: 0':s → 0':s
hole_cond1:cond21_0 :: cond1:cond2
hole_true:false2_0 :: true:false
hole_0':s3_0 :: 0':s
gen_0':s4_0 :: Nat → 0':s
Lemmas:
gr(gen_0':s4_0(n6_0), gen_0':s4_0(n6_0)) → false, rt ∈ Ω(1 + n60)
eq(gen_0':s4_0(n307_0), gen_0':s4_0(n307_0)) → true, rt ∈ Ω(1 + n3070)
Generator Equations:
gen_0':s4_0(0) ⇔ 0'
gen_0':s4_0(+(x, 1)) ⇔ s(gen_0':s4_0(x))
No more defined symbols left to analyse.
(17) LowerBoundsProof (EQUIVALENT transformation)
The lowerbound Ω(n1) was proven with the following lemma:
gr(gen_0':s4_0(n6_0), gen_0':s4_0(n6_0)) → false, rt ∈ Ω(1 + n60)
(18) BOUNDS(n^1, INF)
(19) Obligation:
TRS:
Rules:
cond1(
true,
x,
y) →
cond2(
gr(
y,
0'),
x,
y)
cond2(
true,
x,
y) →
cond2(
gr(
y,
0'),
p(
x),
p(
y))
cond2(
false,
x,
y) →
cond1(
and(
eq(
x,
y),
gr(
x,
0')),
x,
y)
gr(
0',
x) →
falsegr(
s(
x),
0') →
truegr(
s(
x),
s(
y)) →
gr(
x,
y)
p(
0') →
0'p(
s(
x)) →
xeq(
0',
0') →
trueeq(
s(
x),
0') →
falseeq(
0',
s(
x)) →
falseeq(
s(
x),
s(
y)) →
eq(
x,
y)
and(
true,
true) →
trueand(
false,
x) →
falseand(
x,
false) →
falseTypes:
cond1 :: true:false → 0':s → 0':s → cond1:cond2
true :: true:false
cond2 :: true:false → 0':s → 0':s → cond1:cond2
gr :: 0':s → 0':s → true:false
0' :: 0':s
p :: 0':s → 0':s
false :: true:false
and :: true:false → true:false → true:false
eq :: 0':s → 0':s → true:false
s :: 0':s → 0':s
hole_cond1:cond21_0 :: cond1:cond2
hole_true:false2_0 :: true:false
hole_0':s3_0 :: 0':s
gen_0':s4_0 :: Nat → 0':s
Lemmas:
gr(gen_0':s4_0(n6_0), gen_0':s4_0(n6_0)) → false, rt ∈ Ω(1 + n60)
eq(gen_0':s4_0(n307_0), gen_0':s4_0(n307_0)) → true, rt ∈ Ω(1 + n3070)
Generator Equations:
gen_0':s4_0(0) ⇔ 0'
gen_0':s4_0(+(x, 1)) ⇔ s(gen_0':s4_0(x))
No more defined symbols left to analyse.
(20) LowerBoundsProof (EQUIVALENT transformation)
The lowerbound Ω(n1) was proven with the following lemma:
gr(gen_0':s4_0(n6_0), gen_0':s4_0(n6_0)) → false, rt ∈ Ω(1 + n60)
(21) BOUNDS(n^1, INF)
(22) Obligation:
TRS:
Rules:
cond1(
true,
x,
y) →
cond2(
gr(
y,
0'),
x,
y)
cond2(
true,
x,
y) →
cond2(
gr(
y,
0'),
p(
x),
p(
y))
cond2(
false,
x,
y) →
cond1(
and(
eq(
x,
y),
gr(
x,
0')),
x,
y)
gr(
0',
x) →
falsegr(
s(
x),
0') →
truegr(
s(
x),
s(
y)) →
gr(
x,
y)
p(
0') →
0'p(
s(
x)) →
xeq(
0',
0') →
trueeq(
s(
x),
0') →
falseeq(
0',
s(
x)) →
falseeq(
s(
x),
s(
y)) →
eq(
x,
y)
and(
true,
true) →
trueand(
false,
x) →
falseand(
x,
false) →
falseTypes:
cond1 :: true:false → 0':s → 0':s → cond1:cond2
true :: true:false
cond2 :: true:false → 0':s → 0':s → cond1:cond2
gr :: 0':s → 0':s → true:false
0' :: 0':s
p :: 0':s → 0':s
false :: true:false
and :: true:false → true:false → true:false
eq :: 0':s → 0':s → true:false
s :: 0':s → 0':s
hole_cond1:cond21_0 :: cond1:cond2
hole_true:false2_0 :: true:false
hole_0':s3_0 :: 0':s
gen_0':s4_0 :: Nat → 0':s
Lemmas:
gr(gen_0':s4_0(n6_0), gen_0':s4_0(n6_0)) → false, rt ∈ Ω(1 + n60)
Generator Equations:
gen_0':s4_0(0) ⇔ 0'
gen_0':s4_0(+(x, 1)) ⇔ s(gen_0':s4_0(x))
No more defined symbols left to analyse.
(23) LowerBoundsProof (EQUIVALENT transformation)
The lowerbound Ω(n1) was proven with the following lemma:
gr(gen_0':s4_0(n6_0), gen_0':s4_0(n6_0)) → false, rt ∈ Ω(1 + n60)
(24) BOUNDS(n^1, INF)